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SUMMARY

There are two main di�culties in numerical simulation calculations using FD/FV method for the �ows
in real rivers. Firstly, the boundaries are very complex and secondly, the generated grid is usually very
non-uniform locally. Some numerical models in this �eld solve the �rst di�culty by the use of physical
curvilinear orthogonal co-ordinates. However, it is very di�cult to generate an orthogonal grid for real
rivers and the orthogonal restriction often forces the grid to be over concentrated where high resolution
is not required. Recently, more and more models solve the �rst di�culty by the use of generalized
curvilinear co-ordinates (�; �). The governing equations are expressed in a covariant or contra-variant
form in terms of generalized curvilinear co-ordinates (�; �). However, some studies in real rivers indicate
that this kind of method has some undesirable mesh sensitivities. Sharp di�erences in adjacent mesh size
may easily lead to a calculation stability problem or even a false simulation result. Both approaches used
presently have their own disadvantages in solving the two di�culties that exist in real rivers. In this
paper, the authors present a method for two-dimensional shallow water �ow calculations to solve both
of the main di�culties, by formulating the governing equations in a physical form in terms of physical
curvilinear non-orthogonal co-ordinates (s; n). Derivation of the governing equations is explained, and
two numerical examples are employed to demonstrate that the presented method is applicable to non-
orthogonal and signi�cantly non-uniform grids. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Real rivers usually include compound channels consisting of a low-water channel and a high-
water channel. There is not only the external boundary of the high-water channel but also the
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Figure 1. The mapping from physical domain to generalized-co-ordinate domain.

internal boundary of the low-water channel. Two di�culties exist in the numerical simulation
for this kind of �ow�eld. (a) The computational boundaries for this kind of �ow�eld do
not coincide with co-ordinate lines in the Cartesian co-ordinate system (x; y), making the
imposition of boundary conditions di�cult. (b) It is not easy to generate a grid that varies
gradually throughout the whole �ow�eld. Usually, as shown in Figure 3, a sharp di�erence of
adjacent mesh size can exit near the boundary between the low-water and high-water channel,
unless a complex process for grid generation is employed.
Some existing numerical models in computational hydraulics, such as the models of Shimizu

[1], Liu [2], solved the �rst di�culty by the use of physical curvilinear orthogonal co-ordinates
(s; n). However, this kind of orthogonal co-ordinates have two serious drawbacks in the ap-
plications to real rivers. First, it is very di�cult and costly to generate an orthogonal grid for
real rivers having external and internal boundaries. Second, the grid that satis�es orthogonality
may get over concentrated in some regions where high resolution is not required.
Presently, more models have solved the �rst di�culty by the use of another kind of co-

ordinate system called the generalized curvilinear co-ordinates (�; �). The generalized co-
ordinate domain is constructed so that a computational boundary in physical space coin-
cides with a co-ordinate line in generalized-co-ordinate space (also called computational
space). Figure 1 shows the mapping condition from an irregular physical domain to a square
generalized-co-ordinate domain, where the non-uniform curved segments of �s;�n which are
non-orthogonal to each other are mapped to the uniform straight segments of ��;�� which
are orthogonal to each other. The mapping not only deforms the boundaries but also trans-
forms the directions and magnitudes of �ow variables, that is, it also transforms the governing
equations. There are many options in formulating the governing equations transformed from
Cartesian co-ordinates (x; y) to generalized curvilinear co-ordinates (�; �). The main options
can be classi�ed as follows:

(a) The governing equations may be expressed in a semi-contra-variant form in terms
of generalized curvilinear co-ordinates (�; �), in which the Cartesian velocity of u and the
contra-variant velocity of Ucoexist. This is the most extensively used option and most of the
numerical models in computational hydraulics are developed in this way. However, this kind
of method has two problems. First, the velocity variables should be arranged at the boundary
of a control volume in generalized-co-ordinate space (�; �) when using a staggered mesh, but
it is impossible to arrange the Cartesian velocity in this way. Secondly, the method su�ers
from a problem of undesirable mesh sensitivities. According to some theoretical error analyses
[3], additional errors associated with the use of generalized curvilinear co-ordinates (�; �) may
be signi�cant and consequently, result in a computational stability problem if non-uniformity
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of the grid in physical space is considerable. Therefore, it is necessary when using this method
to have the generated grid in the physical domain grow slowly.
(b) The governing equations may be expressed in a complete-contra-variant form in terms

of generalized curvilinear co-ordinates (�; �), in which the Cartesian velocity is no longer
involved. This method eliminates the �rst problem stated in (a) which is caused by the coex-
isting of Cartesian velocity, but still retains the disadvantage of undesirable mesh sensitivities
like that in (a). Koshizuka et al. [4–6] show, theoretically as well as numerically, that stabil-
ity problems may occur when the mesh size of the adjacent cells di�er by more than a factor
of 3.
From the above descriptions, it can be seen that both of the two extensively used co-ordinate

systems in computational hydraulics have their own disadvantages in the application to real
rivers. Physical curvilinear orthogonal co-ordinates (s; n) which is a kind of co-ordinate system
in physical space su�ers from a problem of orthogonal restriction, although it has little problem
on mesh sensitivities. By contrast, generalized curvilinear co-ordinate (�; �), which is a kind
of co-ordinate system in computational space, su�ers from a problem of mesh sensitivities,
although orthogonality is no longer restricted. It is the above weaknesses in the existing models
that motivate our studies to �nd a new method applicable to the severe calculation conditions
in real rivers, namely, to �nd a new method applicable to non-orthogonal and signi�cantly
non-uniform grid.
Our objective can be achieved through solving the problem of undesirable mesh sensitivities

in the use of generalized curvilinear co-ordinates (�; �). In order to reduce mesh sensitivities,
Demirdzic et al. [7], Koshizuka [4–6] and Takizawa et al. [8] introduce the use of a physical
component that was proposed by Truesdell originally. The governing equations are thus ex-
pressed in a contra-variant physical component form in physical space. Their studies indicate
that this kind of formulation will improve greatly the tolerance to the grid’s non-uniformity.
Based on their methodology, the authors derive the transformed governing equations for

two-dimensional shallow water �ows, expressed in a physical form in physical space. The
transformed governing equations completely eliminate the abstract and obtuse notions related
to co-ordinate transformation parameters, and are expressed in terms of physical curvilinear
non-orthogonal co-ordinates (s; n) which is an extension of the extensively used orthogonal
ones. This kind of extension is meaningful for numerical calculations in river engineering. Cor-
rectness of the transformed governing equations is veri�ed, and e�ectiveness of the proposed
method to signi�cantly non-uniform grid is demonstrated, with two numerical examples.
Finally, let us sum up and explain the co-ordinate systems mentioned in the paper in order

to prevent confusion. (x; y) is the well-known Cartesian co-ordinate system. (�; �) is the gen-
eralized curvilinear co-ordinate system in generalized-co-ordinate space (called computational
space also). (s; n) is physical curvilinear co-ordinate system in physical space having two
options for the physical curvilinear orthogonal co-ordinate system and physical curvilinear
non-orthogonal co-ordinate system.

2. GOVERNING EQUATIONS

In order to abbreviate the expressions of governing equations, we denote co-ordinate system
(x; y) as (x1; x2), and (�; �) as (�1; �2) in Sections 2.1 and 2.2.
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2.1. Governing equations in the Cartesian co-ordinate system

Equations (1)–(2) show the two-dimensional shallow water equations in the Cartesian
co-ordinate system (x1; x2) where viscous e�ects are neglected for simplicity:

• Momentum equation

uj
@ui

@x j
=−1

�
�ij
@P
@x j

− �xi
�hs

{
i=1; j=1; 2

i=2; j=1; 2

}
(1)

• Continuity equation
@(uihs)
@xi

=0 (i=1; 2) (2)

where ui is the velocity in the xi direction, P is the pressure=�GH , and �;H;G is
the water density, water level and gravitational acceleration=9:8 m2=s, respectively; hs
is the water depth, �ij is the Kronecker’s delta de�ned as �ij=1 if i= j and �ij=0
if i �= j, �xi is the a friction stress acting on channel bed in xi direction and de�ned
as �xi =(GN 2=

3
√
R)Vui in which N is Manning roughness coe�cient, R is the hydraulic

radius and V is the combined velocity.

2.2. Transformed governing equations expressed in generalized-co-ordinate space

In order to deal with the complicated boundary, the governing equations in the Cartesian
co-ordinate system (x1; x2) stated in Section 2.1 are mapped into the generalized co-ordinate
system (�1; �2). Based on Riemann Geometry, Equations (1)–(2) can be transformed to Equa-
tions (3)–(4) expressed in a complete-contra-variant form in terms of generalized curvilinear
co-ordinates (�1; �2).

Uj∇jU i =−1
�
gij∇jP − T i

�hs

{
i=1; j=1; 2

i=2; j=1; 2
(3)

∇i(Uihs) = 0 (i=1; 2) (4)

where Ui;∇i ; gij denote contra-variant velocity, covariant di�erentiation and fundamental contra-
variant tensor along �i direction in generalized-co-ordinate space. T i denotes the contra-variant
friction stress along the �i direction and is de�ned as T i=(GN 2= 3

√
R)VUi.

Furthermore, Demirdzic [7] and Koshizuka [4–6] indicate that the introduction of a physi-
cal component may greatly improve the tolerance to the grid’s non-uniformity during cal-
culation. According to their methodology, Equations (3)–(4) can be further transformed
to

U ( j)∇( j)U (i) =−1
�
g(ij)∇( j)P − T (i)

�hs

{
i=1; j=1; 2

i=2; j=1; 2
(5)

∇(i)(U (i)hs) = 0 (i=1; 2) (6)
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where U (i);∇(i); g(ij); T (i) denote the physical components of Ui;∇i ; gij; T i, respectively. The
parentheses of herein are used to denote physical components.
Although the expression of Equations (5)–(6) seems rather simple, it is actually quite

complicated when it is unfolded. The momentum equation in the �1 direction unfolded from
Equation (5) has an expression as [4–6]:

1√
g11

[
U (1) @U

(1)

@�1
− g12
g11

{
2

1 1

}
U (1)U (1) +

√
g11
g22

{
1

2 1

}
U (1)U (2)

]

+
1√
g22

[
U (2) @U

(1)

@�2
− g12
g11
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1 2

}
U (1)U (2) +

√
g11
g22
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1
2 2

}
U (2)U (2)

]

=−
√
g11
�

[
g11

@P
@�1

+ g12
@P
@�2

]
− T (1)

�hs
(7)

Equation (7) involves many abstract notations such as fundamental contra- and co-variant
tensors gij; gij, physical component of contra-variant velocity U (i), and Christo�el symbol
{ i
j k }. They make the expression of the equation complicated, and hardly understandable.
Moreover, the more complicated the expression, the higher the calculation cost, and the more
numerical error it may cause due to discretization. The authors therefore make e�orts to
further transform Equations (5)–(6), and obtain the governing equations expressed by physical
variables in physical space which exclude the mapping parameters between co-ordinate systems
and become concise and comparatively understandable.

2.3. Transformed governing equations expressed in physical space

The detailed process to transform Equations (5)–(6) to the equations expressed in physical
space with physical variables in terms of physical curvilinear non-orthogonal co-ordinates
(s; n) can be referred to Appendix A at the end of the paper. The �nal transformed form
of the two-dimensional shallow water governing equations having viscous e�ects ignored are
shown as follows:

• momentum equation in s direction
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u2s
rs

− 1
sin �

u2n
rn
+

1
sin �
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=0 (8)

• momentum equation in n direction
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rs
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=0 (9)
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Figure 2. The discharges into and out from control volume.

• continuity equation
@(Aushs)
@s

+
@(Aunhs)
@n

=0 (10)

where us; un denote the velocities in s; n direction in physical space, respectively, � denotes the
angle between s and n lines, rs; rn denote the curvature radii of s and n line, respectively, and
ks; kn denote the inclinations of s and n line, respectively. P denotes pressure, and �s; �n denote
the friction stresses acting on channel bed in s and n direction de�ned as �s = (GN 2=

3
√
R)Vus

and �n=(GN 2=
3
√
R)Vun, respectively. The third and fourth term in Equation (8) denote the

components of centrifugal forces in s direction caused by the curvatures of s and n line,
respectively, and the �fth and sixth term in Equation (8) denote the components of the Corioli
forces in s direction caused by the variations of s and n line’s inclination, respectively. And
similar explanations can be given to the third and fourth term as well as to the �fth and sixth
term in Equation (9). A is the area of calculation mesh and de�ned as A=ds× dn× sin �.
In the computation, Equation (10) can be reduced to Equation (11), where Qsi−1; j ; Qsi; j are
the discharges into and out of the control volume in the s direction, and Qni; j−1; Qni; j are the
discharges into and out of the control volume in the n direction as shown in Figure 2

Qsi−1; j −Qsi; j +Qni; j−1 −Qni; j=0 (11)

In the case of s line orthogonal to n line, there are the relations of sin �=1; cos �=0,
ks=−1=kn, therefore Equations (8)–(10) can be simpli�ed to the following equations which
are completely consistent with the well-known equations in orthogonal curvilinear co-ordinate
system [1, 2]:

us
@us
@s
+ un

@us
@n

− u2n
rn
+
usun
rs

+
1
�
@P
@s
+
�s
�hs

=0 (12)

us
@un
@s
+ un

@un
@n

− u2s
rs
+
usun
rn

+
1
�
@P
@n
+
�n
�hs

=0 (13)

@(Aushs)
@s

+
@(Aunhs)
@n

=0 (14)

Presently, we ignore the burdensome di�usion term in the governing equation of Equations
(8)–(10) for simpli�cation since this is our �rst step study, and we will address the problem
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of the di�usion term which is much more complicated in our next-step study for promoting
the practical value of the model.

3. NUMERICAL EXAMPLES

The SIMPLER algorithm, which is a revised SIMPLE algorithm having a more rapid conver-
gence speed, proposed by Pantanker [9] is applied to two numerical examples.
The �rst example is for verifying the correctness of the newly transformed governing equa-

tions. For this purpose, two kinds of grids, which are orthogonal and non-orthogonal, are
employed to compute the same example and the consistency of two results is checked. The
governing equations of Equations (12)–(14) which are expressed in terms of physical curvi-
linear orthogonal co-ordinates, are adopted to deal with the case of the orthogonal grid; while
the newly inferred governing equations of Equations (8)–(10) are adopted to deal with the
case of the non-orthogonal grid.
The second example is for demonstrating that the proposed method can be applied to

the extremely non-uniform grid, which often easily leads to a false solution or a problem
of computational stability if the governing equations are expressed in a conventional co- or
contra-variant form in terms of generalized co-ordinate co-ordinates (�; �).

3.1. Example-1

The calculation objective is a meandering channel whose shape is a sine-generated curve
expressed as

�= �max sin(2�s=L) (15)

where � is the angle between the curved centreline and the down-valley axis at an arch
distance of s, �max is the maximum value of �, L is the wavelength measured along the curved
centreline. Simulation conditions are shown in Table I. The initial and boundary conditions
are adopted as follows:

• Initial condition: The initial values of velocity us, water depth hs and water level H are
de�ned by the uniform �ow calculation. And the initial value of velocity un is de�ned
as 0.

• Boundary condition: At upstream (i=1) and downstream (i=nend): the cyclical con-
ditions of �(1; j)=�(nend; j); �(nend + 1; j)=�(2; j) are employed.

• At side wall: free-slip condition is employed.
The contours of calculated velocities are shown in Plates 1 and 2 where Plate 1 shows

the result for orthogonal grid (case 1) and Plate 2 shows the result for non-orthogonal grid

Table I. Simulation condition of Example-1.

Total width of Length of Discharge Manning roughness
channel (cm) channel (cm) �max Q(l=s) Slope ib coe�cient

20 220 35◦ 2.15 0.009 0.015
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Table II. A quantitative comparison between the two results of orthogonal and non-orthogonal grid.

Absolute value Relative value (%)

Mean di�erence of the velocity at each grid point 0.0045 1.2
Di�erence of maximum velocity 0.0043 0.93
Di�erence of minimum velocity 0.0069 2.1
Di�erence of mean velocity 0.0054 1.4

Figure 3. Shape of the arti�cial river calculated.

(case 2). A quantitative comparison between the two results for the velocity is shown in
Table II, where the mean di�erence and the mean relative di�erence of velocity at each grid
point are evaluated by

∑
i

∑
j (u

case1
i; j −ucase2i; j )=(ni×nj) and∑i

∑
j [(u

case1
i; j −ucase2i; j )=ucase1i; j ]=(ni×nj),

respectively, in which ni and nj are the total numbers of i and j index, respectively. However,
as shown in Plates 1 and 2 the position of each grid point for the two cases is di�erent, we
thus take a interpolation to obtain the value of ucase2i; j having the same position as ucase1i; j .
From Table II and comparing Plate 1 with Plate 2, it can be seen that the di�erence between

the two results is very small. This performance demonstrates that the proposed method is
applicable when the grid is non-orthogonal.

3.2. Example-2

The simulation objective is an arti�cial river consisting of low-water and high-water channels
as shown in Figure 3, where high-water channel is wide at some places and very narrow at
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Plate 1. Contour of calculated velocities for orthogonal grid.

Plate 2. Contour of calculated velocities for non-orthogonal grid.
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Plate 3. Contour of calculated velocities.

Plate 4. Calculated velocity vectors.
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Table III. Simulation condition of Example-2.

Total width of Width of low-water Length of Discharge Slope Manning roughness
channel (cm) channel (cm) channel (cm) �max Q(l=s) ib coe�cient

100 20 220 350 7.15 0.009 0.015

Figure 4. Measured velocity vectors.

other places as in a real river. The low-water channel is the sine-generated curve used in
Example-1. It can be seen from Figure 3 that the generated grid is non-orthogonal and the
width of grid �n changes sharply at some place around the boundary between low-water and
high-water channel. The simulation conditions are shown in Table III. Initial and boundary
conditions are adopted as that of Example-1. Contours of calculated velocity are shown in
Plate 3. Vectors of calculated and measured velocities are shown in Plate 4 and Figure 4,
respectively. Although the model used is a simple depth-average two-dimensional one, with
no special consideration on the mutual e�ects between low-water and high-water channel, the
calculated depth-average velocities basically agree with the measured ones.
It should be stressed that the calculation achieved convergence very easily and quickly,

although the width of �n for the generated grid varies sharply, and the largest variation rate
of grid’s width �ni; j=�ni; j+1 is near to 6. The proposed method is therefore demonstrated to
be applicable to the signi�cantly non-uniform grid.

4. CONCLUSION

We have presented a new method that allows calculations to be e�ective even under the
condition that the generated mesh is non-orthogonal and extremely non-uniform locally. The
proposed method was demonstrated to be applicable through two numerical examples.
Compared with the use of Equations (5)–(6) expressed in contra-variant physical com-

ponent form whose unfolded expressions are rather complicated, the governing equations
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proposed by the authors are not only more understandable, but also have a more concise ex-
pression, since the mapping parameters from physical space to generalized-co-ordinate space
are excluded from the equations completely. This leads to simple �nite-di�erence equations
and, consequently, to computational economy.
Our next work is to take account of the di�usion terms that were ignored in this study for

simplicity.

APPENDIX A

This appendix is contributed to describe how to transform the existing governing equations
expressed in a contra-variant physical component form to the proposed governing equations
expressed in a physical form. The detailed transformation process will only focus on the mo-
mentum equation in � direction. As concerns the transformation for the momentum equation
in � direction, it is similar to the case in � direction and thus omitted here. Also, the trans-
formation of continuity equation is omitted for its simplicity. Again, we point out that the
governing equations referred here are the two-dimensional shallow water governing equations
having di�usion term ignored.
Equation (A1) shows the momentum equation in � direction expressed in a contra-variant

physical component form

1√
g11

[
U (1) @U

(1)

@�1
− g12
g11

{
2

1 1

}
U (1)U (1) +

√
g11
g22

{
1

2 1

}
U (1)U (2)

]

+
1√
g22

[
U (2) @U

(1)
@�2

− g12
g11

{
2

1 2

}
U (1)U (2) +

√
g11
g22

{
1

2 2

}
U (2)U (2)

]

=−
√
g11
�

[
g11

@P
@�1

+ g12
@P
@�2

]
− T (1)

�hs
(A1)

where U (i), T (i) denote the physical component of contra-variant velocity Ui and the physical
component of contra-variant friction stress T i. gij, gij denote fundamental co-variant tensor
and fundamental contra-variant tensor, respectively, and { i

j k } denotes Christo�el symbol. The
de�nitions and geometrical meanings of U (i), gij, gij, { i

j k } described by Demirdzic et al. [7]
and Koshizuka et al. [4–6] are given in the following subsection. It should be pointed out
that subscript ij is used to denote co-variant and superscript ij is used to denote contra-variant
throughout the paper.

A.1. De�nitions and geometrical meanings

(1a) Contra-variant physical velocity U (i):

U (1) =
√
g11U 1 =

√
g11(�xux + �yuy) (A2)

U (2) =
√
g22U 2 =

√
g22(�xux + �yuy) (A3)
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(1b) Fundamental co- and contra-variant tensors gij; gij:
Fundamental co-variant tensors gij are also called metric tensor. From the aspect of co-

ordinate transformation relation, they have the following relations with the parameters of
co-ordinate transformation x�; x�; y�; y�:

g11 = x2� + y
2
�; g12 = g21 = x�x� + y�y�; g22 = x2� + y

2
� (A4)

While from the aspect of geometry, gij can be interpreted as the scale factors which associate
the small change ��;�� in generalized-co-ordinate space with the small changes �s;�n in
physical space in the way:

�s=
√
g11 ��; �n=

√
g22 �� (A5)

Also, g12 and g11; g22 have the relation as

g12 = g21 =
√
g11g12 cos � (A6)

where � denotes the angle between s and n lines as shown in Figure 1. gij can be also related
to well-known Jacobian J by

J =(x�y� − x�y�)=
√
|gij|=

√
(g11g22 − g12g21)=√

g11g22 sin � (A7)

Equation (A7) gives a physical interpretation of Jacobian. Concretely, Jacobian denotes the
area in physical space corresponding to the unit area of computational grid in generalized-co-
ordinate space.
Besides, contra-variant gij and co-variant gij has the following relationship:

gijgjk = �ik

namely;

[
g11 g12

g21 g22

][
g11 g12

g21 g22

]
=

[
1 0

0 1

]
(A8)

Thus, the following relations between fundamental co- and contra-variant tensors can be
derived out easily based on Equations (A7) and (A8):

g11 =
g22
J 2
; g12 =− g12

J 2
; g21 =− g21

J 2
; g22 =

g11
J 2

(A9)

(1c) Christo�el symbol { i
j k }:

The Christo�el symbol { i
j k } describes that how many variations for the component in i

direction are caused when the unit vector in j direction moves unit length along k direction.
Speci�cally, { 1

2 2}; { 2
1 1} denote the curvature of computational grid which causes centrifugal

force, while { 1
1 2}; { 2

1 2} denote the distortion of computational grid which causes Corioli force.
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The Christo�el symbol can be de�ned by the various parameters of co-ordinate transformation
as follows: {

1

1 2

}
=
1
J
(y�x�� − x�y��)

{
1

2 2

}
=
1
J
(y�x�� − x�y��)

{
2
1 2

}
=
1
J
(x�y�� − y�x��)

{
2

1 1

}
=
1
J
(x�y�� − y�x��)

(A10)

A.2. Transformation of governing equation

Based on the above de�nitions and geometrical meanings, each term in Equation (A1) can
be transformed into physical space as follows:

(1) Advective term 1 (1=
√
g11)U (1)@U (1)=@�:

There are some relations between parameters of co-ordinate transformation as

�x=
y�
J
; �y=−x�

J
; �x=−y�

J
; �y=

x�
J

(A11)

thus, we may have

U (1) =
√
g11U 1 =

√
g11(�xux + �yuy)=

√
g11

(y�
J
ux − x�

J
uy
)

=
√
g11

(
y�√

g11g22 sin �
ux − x�√

g11g22 sin �
uy

)
=

1
sin �

(
@y
@n
ux − @x

@n
uy

)
(A12)

where � denotes the angle between s and n line.
Let 	 denote the angle between s line and x co-ordinate, 
 denote the angle between n line

and x co-ordinate and us; un denote velocities along s; n lines in physical space, respectively.
One may easily get the following relations:

@y
@n
=sin 
;

@x
@n
=cos
 (A13)

ux= us cos 	+ un cos
; uy= us sin 	+ un sin 
 (A14)

Putting Equations (A13)–(A14) into Equation (A12), we get

U (1) =
1
sin �

[sin 
(us cos 	+ un cos
)− cos
(us sin 	+ un sin 
]

=
1

sin �
us(sin 
 cos 	− cos
 sin 	)= us sin(
 − 	)sin �

= us
sin �
sin �

= us (A15)

Equation (A15) indicates that the contra-variant physical velocity component U (1) actually is
the physical velocity us along s line in physical space.
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Therefore, we may have

1√
g11
U (1) @U

(1)

@�
=U (1) @U

(1)

√
g11@�

= us
@us
@s

(A16)

(2) Advective term 2:
Similar to U (1), it can also be deduced that U (2) actually is the physical velocity un along

n line in physical space.

1√
g22
U (2) @U

(1)

@�
=U (2) @U

(1)

√
g22@�

= un
@us
@n

(A17)

(3) Source term (1a) (centrifugal force caused by the curvature of s line):

− 1√
g11

g12
g11

{
2

1 1

}
U (1)U (1) =−

√
g11g22 cos �√
g11g11

1
J
(x�y�� − y�x��)u2s

=−cos �
sin �

1

g3=211
x2�
@
@�

(
y�
x�

)
u2s =−cos �

sin �
x2�

(x2� + y
2
�)3=2

[
@
@x

(
y�
x�

)
x�

]
u2s

=−cos �
sin �

1
[(1 + y2�=x

2
�)]3=2

@
@x

(
@y
@x

)
u2s =−cos �

sin �
yxx

[1 + (yx)2]3=2
u2s

=+
cos �
sin �

u2s
rs

(A18)

where rs is the curvature radius of s line. An attention should be paid for the sign de�nition
of rs. It can be seen from Equation (A18) that source term (1a) will be equal to 0 if s line
is orthogonal to n line. However, when s line is not orthogonal to n line, the centrifugal
force u2s =rs caused by the curvature of s line acting on the direction orthogonal to s line, can
be divided into two components of force along the directions of s and n lines as shown in
Figure A1. Based on the elementary geometry, it is easy to obtain its two force components
along s and n line to be −cot � u2s =rs and +(1= sin �)u2s =rs, respectively, and be cot � u2s =rs and
−(1= sin �)u2s =rs when they are moved to the left side of equation. This result coincides with
Equation (A18) completely.

s

s

r

u2

cotθ−

s

s

r

u2 n

s

θ s

s

r

u2

sin

1

θ

Figure A1. Two force components of u2s =rs along s and n directions.
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(4) Source term (1b) (centrifugal force caused by the curvature of n line):
Similar to (3), we may have

1√
g22

√
g11
g22

{
1

2 2

}
U (2)U (2) =

√
g11
g22

1
J
(y�x�� − x�y��)u2n=− 1

sin �
u2n
rn

(A19)

(5) Source term (2a) (Corioli force caused by the s line’s distortion of grid):

− 1√
g22

g12
g11

{
2

1 2

}
U (1)U (2) =−

[
1√
g22

√
g11g22 cos �
g11

]
1
J
[(x�y�� − y�x��)]usun

=−
[√
g11 cos �
g11

]
1√

g11g22 sin �

[
@
@�

(
y�
x�

)
x2�

]
usun=−cos �

sin �
x2�
g11

@√
g22@�

(
y�
x�

)
usun

=−cos �
sin �

x2�
(x2� + y

2
�)
@
@n

(
y�
x�

)
usun=−cos �

sin �
1

[1 + (y�=x�)2]
@
@n

(
y�
x�

)
usun

=−cot � 1
1 + k2s

@ks
@n
usun (A20)

where ks denotes the inclination of s line and, @ks=@n denotes the variation of s line’s inclina-
tion along the direction of n line. It can be seen from Equation (A20) that source term (2a)
will be equal to 0 if s line is orthogonal to n line.
(6) Source term (2b) (Corioli force caused by the n line’s distortion of grid):
Similar to (5), we may have

1√
g11

√
g11
g22

{
1

2 1

}
U (2)U (1) =

1
sin �

1
1 + (1=kn)2

@
@s

(
1
kn

)
(A21)

where kn denotes the inclination of n line, and @=@s(1=kn) denotes the variation of 1=kn along
the direction of s line.
(7) Source term (3a) (the force caused by the pressure di�erence in s direction):

√
g11
�

g11
@P
@�
=

√
g11
�

g22
J 2
@P
@�
=
1
�

√
g11g22

g11g22 sin
2 �
@P
@�
=

1
sin2 �

1
�

@P√
g11@�

=
1

sin2 �
1
�
@P
@s

(A22)

(8) Source term (3b) (the force caused by the pressure di�erence in n direction):

−
√
g11
�

g12
@P
@�
=−

√
g11
�

g12
J 2
@P
@�
=−

√
g11
�

√
g11g22 cos �

g11g22 sin
2 �

@P
@�
=− cos �

sin2 �
1
�
@P
@n

(A23)
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(9) Source term (4a) (the friction force acting on river bed in s direction)
Similar to contra-variant physical velocity component U (1), we may also reduce that T (1)

actually are the conventional physical friction stresses �s acting on channel bed along s in
physical space.

T (1)

�hs
=
�s
�hs

(A24)

Finally, putting the above terms of (1)–(9) into Equation (A1), we may obtain the trans-
formed equation expressed in a physical form as

us
@us
@s
+ un

@us
@n
+
cos �
sin �

u2s
rs

− 1
sin �

u2n
rn
+

1
sin �

usun
[1 + (1=kn)2]

@(1=kn)
@s

−cos �
sin �

usun
1 + k2s

@ks
@n
+

1
sin2 �

1
�
@P
@s

− cos �
sin2 �

1
�
@P
@n
+
�s
�hs

=0 (A25)

In the calculation, the geometric parameters of sin �; cos �; ks; kn can be calculated easily
by Equations (A26)–(A28) based on the co-ordinate data of mesh (xi; yi). That means no
matter how complicated the calculation objective’s shape is, the calculation of these geometric
parameters is very easy and would not be a problem.

sin �= sin(	− 
)= sin 	× cos
 − cos 	× sin 
 (A26)

cos �= cos(	− 
)= cos 	× cos
+ sin 	× sin 
 (A27)

ks =
yi+1; j − yi; j
xi+1; j − xi; j ; kn=

yi; j+1 − yi; j
xi; j+1 − xi; j (A28)

where

sin 	=
yi; j+1 − yi; j√

(xi; j+1 − xi; j)2 + (yi; j+1 − yi; j)2
(A29)

cos 	=
xi; j+1 − xi; j√

(xi; j+1 − xi; j)2 + (yi; j+1 − yi; j)2
(A30)

sin 
=
yi+1; j − yi; j√

(xi+1; j − xi; j)2 + (yi+1; j − yi; j)2
(A31)

cos
=
xi+1; j − xi; j√

(xi+1; j − xi; j)2 + (yi+1; j − yi; j)2
(A32)

where 	 denotes the angle between n line and x co-ordinate, and 
 denotes the angle between
s line and x co-ordinate.
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